Bioinformatic prediction of the AP2/ERF family genes in Eucalyptus grandis: focus on the CBF family
نویسندگان
چکیده
Background Due to their very high economic importance, Eucalyptus tree species are among the most planted hardwoods in the world with over 20 million hectares. However, as long-lived evergreen species, this genus is particularly exposed to cold. Frost tolerance varies among species and is inversely correlated to productivity. The AP2/ERF gene family includes developmentally and physiologically important transcription factors characterized by the presence of the AP2/ERF DNA-binding domain. AP2 proteins contain two AP2-like domains and RAV family proteins contain one AP2 domain and one B3 domain. ERF family proteins exhibit only one AP2 domain and are further divided into the DREB subfamily and the ERF subfamily [1]. The CBF/DREB1 protein differ from the other DREB proteins by the presence of “signature sequences” (PKK/RPAGRxKFxETRHP and DSAWR) flanking the DNA-binding AP2 domain [2]. The DREB factors recognize the C-repeat or dehydration response element (DRE) in the promoters of low temperature and/or water deficit responsive genes and would play a crucial role in response to abiotic stresses. CBF/DREB1 are the key regulators of the cold-responsive (COR) genes. So far CBF transcription factors have been mainly characterized in model plants such as Arabidopsis, but lately they were identified in several tree species including Eucalyptus [2]. The Eucalyptus cold tolerance was greatly improved in our hands when two genes from the four CBF members isolated from a tolerant species E. gunnii were individually constitutively overexpressed in the frost sensitive E. urophylla x E. grandis hybrid [3]. In the present study E. grandis AP2/ERF family genes were identified based on the presence of putative encoding AP2-domain(s) and were studied with regard to the model herbaceous Arabidopsis as well as the main sequenced woody plants. Within this family, a part of the study focused on the CBF/DREB1 subfamily which was compared to the four genes already characterized in E. gunnii[2].
منابع مشابه
Genome-Wide Analysis of the AP2/ERF Family in Eucalyptus grandis: An Intriguing Over-Representation of Stress-Responsive DREB1/CBF Genes
BACKGROUND The AP2/ERF family includes a large number of developmentally and physiologically important transcription factors sharing an AP2 DNA-binding domain. Among them DREB1/CBF and DREB2 factors are known as master regulators respectively of cold and heat/osmotic stress responses. EXPERIMENTAL APPROACHES The manual annotation of AP2/ERF family from Eucalyptus grandis, Malus, Populus and V...
متن کاملGenome-wide analysis of the AP2/ERF superfamily in peach (Prunus persica).
We identified 131 AP2/ERF (APETALA2/ethylene-responsive factor) genes in material from peach using the gene sequences of AP2/ERF amino acids of Arabidopsis thaliana (Brassicaceae) as probes. Based on the number of AP2/ERF domains and individual gene characteristics, the AP2/ERF superfamily gene in peach can be classified broadly into three families, ERF (ethylene-responsive factor), RAV (r...
متن کاملDNA binding by the Arabidopsis CBF1 transcription factor requires the PKKP/RAGRxKFxETRHP signature sequence.
The CBF/DREB1 transcriptional activators are key regulators of plant freezing tolerance. They are members of the AP2/ERF multi-gene family, which in Arabidopsis comprises about 145 members. Common to these proteins is the AP2/ERF DNA-binding domain, a 60-amino-acid fold composed of a three-stranded beta-sheet followed by a C-terminal alpha-helix. A feature that distinguishes the CBF proteins fr...
متن کاملGenome-wide analysis of the AP2/ERF gene family in Salix arbutifolia
AP2/ERF genes encode transcriptional regulators with a variety of functions in plant growth and development and in response to biotic and abiotic stresses. To date, there are no detailed classification and expression profiles for AP2/ERF genes in Salix. In this study, a comprehensive computational analysis identified 173 AP2/ERF superfamily genes in willow (Salix arbutifolia), by using in silic...
متن کاملGenome-Wide Analysis of APETALA2/Ethylene-Responsive Factor (AP2/ERF) Gene Family in Barley (Hordeum vulgare L.)
APETALA2/Ethylene-Responsive Factor (AP2/ERF) gene family is plant specific transcription factor. It plays critical roles in development process, tolerance to biotic and abiotic stresses, and responses to plant hormones. However, limited data are available on the contributions of AP2/ERF gene family in barley (Hordeum vulgare L.). In the present study, 121 HvAP2/ERF genes in barley were identif...
متن کامل